Modelamiento matemático de la población ecuatoriana mediante ecuaciones diferenciales con retardo y su validación con datos del Censo 2022

Population modeling with EDR and Census 2022

Authors

  • Lic. Jefferson Agustín Macías Bravo Universidad Técnica de Manabí
  • Ambrosio Tineo Moya Universidad Técnica de Manabí
  • Maribel Pérez Pirela, PhD. Universidad Técnica de Manabí

DOI:

https://doi.org/10.37117/s.v27i2.1212

Keywords:

Population; Delay Differential Equations; Mathematical Modeling; Ecuador Census 2022; Demographic Transition; Google Colab; Python.

Abstract

This study presents the application and evaluation of a time-delay population growth mathematical model to describe the dynamics of Ecuador's population between 2001 and 2022. A delay differential equation (DDE) model based on the formulation dP(t)/dt = r P(t-τ) was used, where r is the intrinsic growth rate and τ is the delay. The rate r was estimated from the 2001 and 2010 census data (r ≈ 0.0224 year⁻¹). The model was numerically solved using a finite difference method implemented in Python (Google Colab) for the period 2001-2022. The simulated population for 2010 showed a relative error of 1.54% compared to the census data. However, the projection for 2022 with 18 658 915 inhabitants presented a relative error of 10.15% against the real 2022 Census data with 16 938 986 inhabitants, indicating an overestimation. This result is discussed in the context of Ecuador's new demographic reality, characterized by slowed population growth and aging, as revealed by the INEC. It is concluded that while the model captures the historical trend, its long-term predictive capability is limited without updating parameters or incorporating changing demographic dynamics.

Downloads

Download data is not yet available.

References

Bacaër, N. (2011). A Short History of Mathematical Population Dynamics. London: Springer. doi:https://doi.org/10.1007/978-0-85729-115-8

Brauer, F., & Castillo Chavez, C. (2012). Mathematical Models in Population Biology and Epidemiology. New York: Springer. doi:https://doi.org/10.1007/978-1-4614-1686-9?spm=a2ty_o01.29997173.0.0.3beec9215Xg3qL

Gopalsamy, K. (1992). Stability and Oscillations in Delay Differential Equations of Population Dynamics. Springer Science & Business Media. Obtenido de https://books.google.com.ec/books/about/Stability_and_Oscillations_in_Delay_Diff.html?id=BXbK_T_PSdwC&redir_esc=y

Instituto Nacional de Estadística y Censos. (2013). Censos de población y vivienda. Obtenido de https://www.ecuadorencifras.gob.ec/documentos/inec37/censos.html

Instituto Nacional de Estadística y Censos. (2023). Ecuador creció en 2.5 millones de personas entre 2010 y 2022. Obtenido de https://www.censoecuador.gob.ec/ecuador-crecio-en-2-5-millones-de-personas-entre-2010-y-2022/

Instituto Nacional de Estadísticas y Censos . (11 de julio de 2024). Desafíos y oportunidades para el Ecuador ante el envejecimiento poblacional: INEC destaca datos claves en el Día Mundial de la Población. Obtenido de Censo Ecuado: https://www.censoecuador.gob.ec/

Keyfitz, N. (1977). Applied Mathematical Demography. New York: Springer. doi:https://doi.org/10.1007/978-1-4757-1879-9

Lee, R. D., & Tuljapurkar, S. (1994). Stochastic Population Forecasts for the United States: Beyond High, Medium, and Low. Journal of the American Statistical Association, 89(428), 1175–1189. doi:https://doi.org/10.2307/2290980

Lotka, A. J. (1939). Théorie analytique des associations biologiques (Vol. II). Hermann et cie. Recuperado el 15 de junio de 2025, de https://books.google.com.ec/books?id=iTetsdX3Le4C

Millman, K., & Perez, F. (2014). Developing Open-Source Scientific Practice. Implementing Reproducible Research, 149-183. doi:http://dx.doi.org/10.1201/9781315373461-6

Murray , J. D. (2002). Mathematical Biology. New York: Springer. doi:https://doi.org/10.1007/b98868

Perez, F., & Granger, B. E. (2007). IPython: A System for Interactive Scientific Computing. Computing in Science & Engineering, 9(3), 21 - 29. doi:https://doi.org/10.1109/MCSE.2007.53

Preston, S., Heuveline, P., & Guillot, M. (2000). Demography: Measuring and Modeling Population Processes. Wiley. Obtenido de https://books.google.com.ec/books/about/Demography.html?id=xlv2H6LpNAwC&redir_esc=y

Shampine, L. F., & Thompson, S. (2001). Solving DDEs in Matlab. Applied Numerical Mathematics, 37(4), 441-458. doi:https://doi.org/10.1016/S0168-9274(00)00055-6

Smith, H. L. (2011). An Introduction to Delay Differential Equations with Applications to the Life Sciences. New York: Springer. doi:10.1007/978-1-4419-7646-8.

Published

2025-12-31

How to Cite

Macías Bravo, L. J. A., Tineo Moya, A. ., & Pérez Pirela, PhD., M. (2025). Modelamiento matemático de la población ecuatoriana mediante ecuaciones diferenciales con retardo y su validación con datos del Censo 2022: Population modeling with EDR and Census 2022. Sinapsis, 27(2). https://doi.org/10.37117/s.v27i2.1212