Efectos del uso de la Uva (Vitis vinífera) en recubrimientos comestibles y odontología: una revisión bibliográfica.

Autores/as

  • Irvin Tubon Universidad Tecnica de Ambato
  • Gabriela Vaca
  • Carolina Aldaz
  • Karina Arcos

DOI:

https://doi.org/10.37117/higia.v7i2.726

Palabras clave:

uva, recubrimiento comestible, odontología

Resumen

La uva (Vitis vinífera) denota un gran consumo a nivel mundial, ya sea por los metabolitos secundarios presentes en cada una de sus estructuras, o por los productos que pueden generarse a partir de ellas. Es así como la presente revisión bibliográfica brinda una actualización sobre los diversos metabolitos secundarios que forman parte de la uva, así como los usos que se pueden dar ya sea en el campo alimentario como odontológico. Se realizó una investigación de tipo bibliográfica, exploratoria y no experimental, mediante la búsqueda de información, usando diversas palabras clave, en las bases de datos científicas Pubmed, Scielo, Science Direct y Google académico obteniéndose 47 artículos que cumplieron con los criterios de inclusión planteados. Se determino que la uva contiene numerosos compuestos fenólicos de los cuales destacan diversos flavonoides que le brindan actividades biológicas como antioxidante, antimicrobiano, antiinflamatorio, antiséptico, cicatrizante, anticoagulante, entre otros. Además, diversos estudios han evidenciado el aumento de la vida útil de los alimentos que contienen recubrimientos comestibles elaborados con extractos de uva los cuales podrían, a más de conservar alimentos, ser útiles en la práctica odontológica contra diversas patologías orales generando una alternativa en investigación ante este tipo de problemas.

Citas

Nandakumar V, Singh T, Katiyar SK. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett [Internet]. 2008 Oct 10 [cited 2022 Aug 24];269(2):378. Available from: /pmc/articles/PMC2562893/

Anastasiadi M, Pratsinis H, Kletsas D, Skaltsounis AL, Haroutounian SA. Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: Evaluation of the antioxidant activities of their extracts. Food Research International. 2010 Apr;43(3):805–13.

Yi C, Shi J, Kramer J, Xue S, Jiang Y, Zhang M, et al. Fatty acid composition and phenolic antioxidants of winemaking pomace powder. Food Chem. 2009 May 15;114(2):570–6.

LI F xiang, LI F hua, YANG Y xuan, YIN R, MING J. Comparison of phenolic profiles and antioxidant activities in skins and pulps of eleven grape cultivars (Vitis vinifera L.). J Integr Agric. 2019 May 1;18(5):1148–58.

Krishnaswamy K, Orsat V, Gariépy Y, Thangavel K. Optimization of Microwave-Assisted Extraction of Phenolic Antioxidants from Grape Seeds (Vitis vinifera). Food and Bioprocess Technology 2012 6:2 [Internet]. 2012 Feb 26 [cited 2022 Aug 24];6(2):441–55. Available from: https://link.springer.com/article/10.1007/s11947-012-0800-2

Castell-Auví A, Cedó L, Pallarès V, Blay MT, Pinent M, Motilva MJ, et al. Procyanidins modify insulinemia by affecting insulin production and degradation. J Nutr Biochem [Internet]. 2012 Dec [cited 2022 May 3];23(12):1565–72. Available from: https://pubmed.ncbi.nlm.nih.gov/22444499/

Estrada-Reyes R, Ubaldo-Suárez D, Araujo-Escalona AG. Los flavonoides y el Sistema Nervioso Central ¿QUÉ SON LOS FLAVONOIDES? Artículo original Salud Mental. 2012;35(5):375–84.

Díaz-Montes E, Castro-Muñoz R. Edible Films and Coatings as Food-Quality Preservers: An Overview. Foods [Internet]. 2021 Feb 1 [cited 2022 Aug 31];10(2). Available from: /pmc/articles/PMC7912451/

Pop OL, Pop CR, Dufrechou M, Vodnar DC, Socaci SA, Dulf F v., et al. Edible Films and Coatings Functionalization by Probiotic Incorporation: A Review. Polymers (Basel) [Internet]. 2019 Jan 1 [cited 2022 Aug 31];12(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31861657/

Yong H, Liu J. Active packaging films and edible coatings based on polyphenol-rich propolis extract: A review. Compr Rev Food Sci Food Saf [Internet]. 2021 Mar 1 [cited 2022 Aug 31];20(2):2106–45. Available from: https://pubmed.ncbi.nlm.nih.gov/33486883/

Nardini M, Forte M, Vrhovsek U, Mattivi F, Viola R, Scaccini C. White Wine Phenolics Are Absorbed and Extensively Metabolized in Humans. J Agric Food Chem [Internet]. 2009 Apr 8 [cited 2022 Aug 24];57(7):2711–8. Available from: https://pubs.acs.org/doi/abs/10.1021/jf8034463

Soto ML, Conde E, González-López N, Conde MJ, Moure A, Sineiro J, et al. Recovery and concentration of antioxidants from winery wastes. Molecules [Internet]. 2012 Mar [cited 2022 May 3];17(3):3008–24. Available from: https://pubmed.ncbi.nlm.nih.gov/22406904/

Beltrán B, Estévez R, Cuadrado C, Jiménez S, Alonso BO. Base de datos de carotenoides para valoración de la ingesta dietética de carotenos, xantofilas y de vitamina A: utilización en un estudio comparativo del estado nutricional en vitamina A de adultos jóvenes. Nutr Hosp [Internet]. 2012 [cited 2022 May 3];27(4):1334–43. Available from: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112012000400055&lng=es&nrm=iso&tlng=es

May P. From bud to berry, with special reference to inflorescence and bunch morphology in Vitis vinifera L. Aust J Grape Wine Res [Internet]. 2000 Jul 1 [cited 2022 Aug 24];6(2):82–98. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1755-0238.2000.tb00166.x

Eyduran SP, Akin M, Ercisli S, Eyduran E, Maghradze D. Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis Vinifera L.) from igdir province of eastern Turkey. Biol Res [Internet]. 2015 Jan 13 [cited 2022 Aug 24];48(1):1–8. Available from: https://biolres.biomedcentral.com/articles/10.1186/0717-6287-48-2

Molina-Quijada DMA, Medina-Juárez LA, González-Aguilar GA, Robles-Sánchez RM, Gámez-Meza N. Compuestos fenólicos y actividad antioxidante de cáscara de uva (Vitis vinifera L.) de mesa cultivada en el noroeste de México Phenolic compounds and antioxidant activity of table grape (Vitis vinifera L.) skin from northwest Mexico. http://mc.manuscriptcentral.com/tcyt [Internet]. 2010 [cited 2022 May 3];8(1):57–63. Available from: https://www.tandfonline.com/doi/abs/10.1080/19476330903146021

Perestrelo R, Barros AS, Rocha SM, Câmara JS. Optimisation of solid-phase microextraction combined with gas chromatography–mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Talanta. 2011 Sep 15;85(3):1483–93.

Ortega-Regules A, Ros-García JM, Bautista-Ortín AB, López-Roca JM, Gómez-Plaza E. Differences in morphology and composition of skin and pulp cell walls from grapes (Vitis vinifera L.): technological implications. European Food Research and Technology 2007 227:1 [Internet]. 2007 Jul 24 [cited 2022 Aug 24];227(1):223–31. Available from: https://link.springer.com/article/10.1007/s00217-007-0714-9

Levy J, Boyer RR, Neilson AP, O’Keefe SF, Chu HSS, Williams RC, et al. Evaluation of peanut skin and grape seed extracts to inhibit growth of foodborne pathogens. Food Sci Nutr [Internet]. 2017 Nov 1 [cited 2022 May 3];5(6):1130–8. Available from: https://pubmed.ncbi.nlm.nih.gov/29188040/

Yang Y, Jin GJ, Wang XJ, Kong CL, Liu J bin, Tao YS. Chemical profiles and aroma contribution of terpene compounds in Meili (Vitis vinifera L.) grape and wine. Food Chem. 2019 Jun 30;284:155–61.

Tabeshpour J, Mehri S, Shaebani Behbahani F, Hosseinzadeh H. Protective effects of Vitis vinifera (grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: A comprehensive review. Phytotherapy Research [Internet]. 2018 Nov 1 [cited 2022 Aug 24];32(11):2164–90. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ptr.6168

ben Khadher T, Aydi S, Mars M, Bouajila J. Study on the Chemical Composition and the Biological Activities of Vitis vinifera Stem Extracts. Molecules [Internet]. 2022 May 1 [cited 2022 Aug 29];27(10). Available from: https://pubmed.ncbi.nlm.nih.gov/35630586/

Zannella C, Giugliano R, Chianese A, Buonocore C, Vitale GA, Sanna G, et al. Antiviral Activity of Vitis vinifera Leaf Extract against SARS-CoV-2 and HSV-1. Viruses [Internet]. 2021 Jul 1 [cited 2022 Aug 29];13(7). Available from: https://pubmed.ncbi.nlm.nih.gov/34209556/

Stranska M, Lovecka P, Vrchotova B, Uttl L, Bechynska K, Behner A, et al. Bacterial Endophytes from Vitis vinifera L. - Metabolomics Characterization of Plant-Endophyte Crosstalk. Chem Biodivers [Internet]. 2021 Dec 1 [cited 2022 Aug 29];18(12). Available from: https://pubmed.ncbi.nlm.nih.gov/34609783/

Meng L, Jiao Y, Zhou X, Liang C, Yan K, Zhao Y, et al. Leaf extract from Vitis vinifera L. reduces high fat diet-induced obesity in mice. Food Funct [Internet]. 2021 Jul 21 [cited 2022 Aug 29];12(14):6452–63. Available from: https://pubmed.ncbi.nlm.nih.gov/34076007/

Pérez-Díaz R, Madrid-Espinoza J, Salinas-Cornejo J, González-Villanueva E, Ruiz-Lara S. Differential roles for VviGST1, VviGST3, and VviGST4 in proanthocyanidin and anthocyanin transport in vitis vinífera. Front Plant Sci. 2016 Aug 3;7(AUG2016):1166.

Liu R, Zhang Y, Yao X, Wu Q, Wei M, Yan Z. ε-Viniferin, a promising natural oligostilbene, ameliorates hyperglycemia and hyperlipidemia by activating AMPK in vivo. Food Funct [Internet]. 2020 Nov 19 [cited 2022 Aug 29];11(11):10084–93. Available from: https://pubs.rsc.org/en/content/articlehtml/2020/fo/d0fo01932a

Yıldırım-Yalçın M, Şeker M, Sadıkoğlu H. Development and characterization of edible films based on modified corn starch and grape juice. Food Chem. 2019 Sep 15;292:6–13.

Neeraj, Siddiqui S, Dalal N, Srivastva A, Pathera AK. Physicochemical, morphological, functional, and pasting properties of potato starch as a function of extraction methods. Journal of Food Measurement and Characterization. 2021 Jun 1;15(3):2805–20.

Galindez A, Daza LD, Homez-Jara A, Eim VS, Váquiro HA. Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohydr Polym. 2019 Jul 1;215:143–50.

Daza LD, Homez-Jara A, Solanilla JF, Váquiro HA. Effects of temperature, starch concentration, and plasticizer concentration on the physical properties of ulluco (Ullucus tuberosus Caldas)-based edible films. Int J Biol Macromol. 2018 Dec 1;120:1834–45.

Elsabee MZ, Abdou ES. Chitosan based edible films and coatings: A review. Materials Science and Engineering C [Internet]. 2013;33(4):1819–41. Available from: http://dx.doi.org/10.1016/j.msec.2013.01.010

Díaz-Montes E, Castro-Muñoz R. Edible films and coatings as food-quality preservers: An overview. Foods. 2021;10(2):1–26.

Rodrigues MÁV, Bertolo MRV, Marangon CA, Martins V da CA, Plepis AM de G. Chitosan and gelatin materials incorporated with phenolic extracts of grape seed and jabuticaba peel: Rheological, physicochemical, antioxidant, antimicrobial and barrier properties. Int J Biol Macromol. 2020 Oct 1;160:769–79.

Yıldırım-Yalçın M, Sadıkoğlu H, Şeker M. Characterization of edible film based on grape juice and cross-linked maize starch and its effects on the storage quality of chicken breast fillets. LWT. 2021 May 1;142:111012.

Priyadarshi R, Kim SM, Rhim JW. Carboxymethyl cellulose-based multifunctional film combined with zinc oxide nanoparticles and grape seed extract for the preservation of high-fat meat products. Sustainable Materials and Technologies. 2021 Sep 1;29:e00325.

Priyadarshi R, Riahi Z, Rhim JW. Antioxidant pectin/pullulan edible coating incorporated with Vitis vinifera grape seed extract for extending the shelf life of peanuts. Postharvest Biol Technol. 2022 Jan 1;183.

Castellan CS, Bedran-Russo AK, Karol S, Pereira PNR. Long-term stability of dentin matrix following treatment with various natural collagen cross-linkers. J Mech Behav Biomed Mater [Internet]. 2011 Oct [cited 2022 Aug 30];4(7):1343. Available from: /pmc/articles/PMC3143368/

dos Santos PH, Karol S, Bedran-Russo AK. Long-term nano-mechanical properties of biomodified dentin–resin interface components. J Biomech. 2011 Jun 3;44(9):1691–4.

Furiga A, Lonvaud-Funel A, Badet C. In vitro study of antioxidant capacity and antibacterial activity on oral anaerobes of a grape seed extract. Food Chem. 2009 Apr 15;113(4):1037–40.

Salazar JC, Solórzano FM, Tatés VM, Garcés MS, Armas A del C. Efecto antimicrobiano de extractos acuosos de la cáscara, pulpa y semilla de uva (vitis vinifera) sobre Streptococcus mutans, estudio in vitro. Revista KIRU [Internet]. 2018 Jul 30 [cited 2022 Aug 30];15(2):2410–717.

Sánchez MC, Ribeiro-Vidal H, Esteban-Fernández A, Bartolomé B, Figuero E, Moreno-Arribas M v., et al. Antimicrobial activity of red wine and oenological extracts against periodontal pathogens in a validated oral biofilm model. BMC Complement Altern Med [Internet]. 2019 Jun 21 [cited 2022 Aug 30];19(1):1–12. Available from: https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-019-2533-5

de Rezende Barbosa GL, Pimenta LA, de Almeida SM. Micro-CT evaluation of the radioprotective effect of resveratrol on the mandibular incisors of irradiated rats. Braz Oral Res [Internet]. 2016 Mar 8 [cited 2022 Aug 30];30(1):1–6. Available from: http://www.scielo.br/j/bor/a/h3N6Cmq8rfBJ7gyYQSJJ5Sv/abstract/?lang=en

Cardoso P, Filho L, Ferreira D, de Souza S, Rafael ;, De A, et al. Evaluation of Bond Systems Associated or not to Grape Seed Proanthocyanidin in Cervical Dentinary Hypersensitivity Control. Journal of Health Sciences [Internet]. 2020 May 28 [cited 2022 Aug 30];22(1):18–23. Available from: https://journalhealthscience.pgsskroton.com.br/article/view/7398

Sylla Gueye R, Bhoye Balde M, Diedhiou A, Tine Y, Gueye Rokhaya S, Mamadou S, et al. EVALUATION OF THE ANTIOXIDANT ACTIVITY In vitro AND Ex vivo OF ALMONDS OF Mangifera indica (Anacardiaceae) OPV modelling and fabrication View project Modern imaging tools in developping countries View project EVALUATION OF THE ANTIOXIDANT ACTIVITY In vitro AND Ex vivo OF ALMONDS OF Mangifera indica (Anacardiaceae). Original Research Article Journal of International Research in Medical and Pharmaceutical Sciences [Internet]. 2016 [cited 2022 Aug 30];7(4):2395–4485. Available from: https://www.researchgate.net/publication/317647028

Muñoz-González I, Thurnheer T, Bartolomé B, Moreno-Arribas MV. Red wine and oenological extracts display antimicrobial effects in an oral bacteria biofilm model. J Agric Food Chem [Internet]. 2014 May 21 [cited 2022 Aug 30];62(20):4731–7. Available from: https://pubs.acs.org/doi/abs/10.1021/jf501768p

Publicado

2022-12-28

Cómo citar

Tubon, I., Vaca, G. ., Aldaz, C., & Arcos, K. . (2022). Efectos del uso de la Uva (Vitis vinífera) en recubrimientos comestibles y odontología: una revisión bibliográfica. Revista Científica Higía De La Salud, 7(2). https://doi.org/10.37117/higia.v7i2.726