Software visualization, an effective alternative in the teaching of computer programming

Authors

  • Karina Virginia Mero Suárez, Ing Carrera Ingeniería en Sistemas Computacionales, Universidad Estatal del Sur de Manabí, Manabí, Ecuador
  • Edwin Joao Merchán Carreño, Ing
  • Carlos Renán Mero Suárez, Ing. Facultad de Ciencias Económicas, Universidad Estatal del Sur de Manabí, Manabí, Ecuador

DOI:

https://doi.org/10.37117/s.v2i13.156

Abstract

Abstract

The Program Visualization Techniques perform graphic representations and high level abstractions that describe the code and data of the program, transforming the traditional information into a more meaningful one that facilitates the understanding by the programmer, which constitutes a problem to be solved at present. The objective of this work is to analyze the role of technology-mediated teaching as an alternative to the traditional teaching model, the impact of software visualization tools, as well as the adequate theoretical bases for the use of these systems to help the process of teaching-learning, that contribute to elevate the excellence of the teaching process in the career in Computer Systems Engineering of the Southern State University of Manabí in Ecuador. Tools and strategies are used to show the stages in the design and implementation of algorithms, which allow us to conclude that Piaget's constructivist approach, meaningful teaching and psychogenetic approach must be foundations to be considered in order to design environments mediated by technologies that will allow the development of applications effective educational in the teaching of Computer Programming, thus facilitating collaboration and exchange between the subjects of the process; Likewise, it is determined that Piaget's approach is very useful to diagnose what the student already knows and how to go, gradually, using their potentialities, incorporating the new concepts always in a higher level of complexity, respecting their rhythm so that they can assimilate, accommodate and apply what has been learned, developing new mental structures.

Keywords: computer programming, visualization programs, pedagogical paradigms,constructivist. approaches

Downloads

Download data is not yet available.

References

ACM, & IEEE-CS. (2014). Computing Curricula 2009. The Overview Report covering undergraduate degree programs in Computer Engineering, Computer Science, Information Systems Information Technology, Software Engineering (pp. 58): ACM & IEEE-CS.

Almeida, F., Blanco, V., & Moreno, L. (2013). EDApplets: Una Herramienta Web para la Enseñanza de Estructuras de Datos y Técnicas Algorítmitcas. Paper presented at the X Jornadas de Enseñanza Universitaria de la Informática, Universidad de Laguna. Tenerife.

Ausubel, D., Novak, J., & Hainesian, H. (2000). Psicología Educativa. Un punto de vista cognocitivo (Trillas ed. Vol. 1). México.

Barbe, W. B., & Milone, M. N. (2015). What we know about modality strengths. Educational Leadership, 38, 378-380.

Barnes, D., & Kolling, M. (2015). Objects first with Java: A practical introduction to using BlueJ (Prentice Hall/Pearson Education ed. Vol. 1). Harlow, England.

Bennedsen, J., & Caspersen, M. (2014). Failure rates in introductory programming. ACM SIGCSE Bulletin, 39(2), 45-67.

Bladek, C., & Deek, F. P. (2010). Understanding novice programmers difficulties as a requirement to specifying effective learning environments. New directions in higher education, Nova Science, 5.

Cañas, A., Granados, A., Pérez, C., Pérez, J., & Hill, G. (2015). The network architecture of CmapTools (Technical Report No. IHMC CmapTools 2003-01). , FL: Institute for Human and Machine Cognition. Pensacola.

Cañas, A., & Novak, J. (2004). Concept Maps: Theory, Methodology, Technology. Paper presented at the First Int. Conference on Concept Mapping, Spain.

Castillo, J., & Barberán, O. (2016). Mapas Conceptuales en Matemáticas. Retrieved 12-3-2018, 2018, from http://www.cip.es/netdidactica/articulos/mapas.htm

Cooper, S., Dann, W., & Pausch, R. (2012). ALICE: A 3-D tool for introductory programming concepts. Paper presented at the 5th Annual CCSC Northeastern Conference, New York.

Chestlevar, C. I. (2015). Utilización de Mapas Conceptuales en la enseñanza de la programación. Informática Aplicada, 2, 11.

Deek, F. P. (1997). An integrated environment for problem solving and problem development. (Ph.D. Computer and Information Science), Institute of Technology, Newark, New Jersey.

Deek, F. P., & McHugh, J. (2013). SOLVEIT: An experimental environment for problem solving and program development. Journal of Applied Systems Studies, 2(2), 376-396.

Deek, F. P., McHugh, J., & Hiltz, S. R. (2013). Methodology and technology for learning programming. Systems and Information Technology, 4(1), 25-37.

George, C. (2011). Experiences with novices: The importance of graphical representations in supporting mental models. Paper presented at the 12th Annual Workshop of the Psychology of Programming Interest Group.

Good, J., & Brna, P. (2014). Novice difficulties with recursion: Do graphical representations hold the solution? Paper presented at the European Conference on Artificial Intelligence in Education, Lisbon, Portugal.

Guttag, J., & Liskov, B. (1986). Abstraction and Specification in Program Development. Leipzig: The MIT Press.

Guzdial, M., & Elliott, A. (2015). Imagineering inauthentic legitimate peripheral participation: an instructional design approach for motivating computing education. Paper presented at the International workshop on Computing education research, Canterbury, United Kingdom.

Hennessy, S. (2013). Learner perceptions of realism and magic in computer simulations. British Journal of Educational Technology, 24.

Hung, T., & Rodger, S. (2016). Increasing Visualization and Interaction in the Automata Theory Course. Paper presented at the 41st SIGCSE Technical Symposium on Computer Science Education, Austin, Texas.

Lezcano, M. (1998). "Ambientes de aprendizaje por descubrimiento para la disciplina Inteligencia Artificial". (Doctorado en Computación y Automática), Universidad Central "Marta Abreu" de Las Villas, Santa Clara.

Liffick, B., & Aiken, R. (2011). A novice programmer’s support environment. Paper presented at the Integrating Technology into Computer Science Education.

Merril, P. (2016). Computers in education (Allyn & Bacon ed. Vol. 1).

Moor, B., & Deek, F. (2014). On the Design and Development of a UML-Based Visual Environment for Novice Programmers. College of Computing Sciences, New Jersey Institute of Technology, Newark, NJ, USA. Journal of Information Technology Education, 5, 1-24.

Moor, B., & Deek, F. (2014). A Visualization Tool Using UML Subset to Aid the Novice Programmer. Paper presented at the World Conference on Educational Multimedia, Hypermedia and Telecommunications 2005, Chesapeake.

Morris, J. (2003). Algorithm Animation: Using algorithm code to drive an animation. Journal of Visual Langiuages and Computing, 2(3), 6-15.

Muthukumarasamy, J., & Stasko, J. (2012). Visualizing Program. Executions on Large Data Sets using Semantic Zooming (pp. 17). Atlanta: Graphics,Visualization and Usability Center, CollegeofComputing, GeorgiaInstituteofTechnology

Novak, J. (1991). Ayudar a los alumnos a aprender cómo aprender. La opinión de un profesor-investigador” en Enseñanza de las Ciencias. 9,3, 215-227.

Novak, J., & Gowin, D. (1988). Aprendiendo a aprender (Martínez Roca ed.). Barcelona.

Ontoria, A. (2014). Mapas conceptuaIes: una técnica para aprender (Narcea S.A. ed.). Javeriana.

Pane, J., & Myers, B. (2013). Usability issues in the design of novice programming systems (School of Computer Science Technical. Carnegie Mellon University ed., pp. 44). Pittsburgh, PA.

Papert, S. (1999). ¿Qué es Logo? ¿Quién lo necesita? Logo Philosophy and Implementation: LCSI.

Piaget, J. (1971). Psicología de la inteligencia. Buenos Aires: Psique.

Piaget, J. (1978). La equilibración de las estructuras cognitivas. Problema central del desarrollo. Madrid: Siglo XXI.

Roman, G. C., & Cox, K. C. (1993). A taxonomy of program visualization systems. Visualización de Software Orientada a Comprensióon de Programas. Computer, 26(12), 11-24.

Satratzemi, M., Dagdilelis, V., & Evageledis, G. (2014). A system for program visualization and problem-solving path assessment of novice programmers. Paper presented at the Annual Joint Conference Integrating Technology into Computer Science Education, 6th Annual Conference on Innovation and Technology in Computer Science Education.

Señas, P., & Moroni, N. (2011). Herramientas no convencionales para la enseñanza de la programación. (Doctor en Ciencias Doctorado en Computación), Instituto de Ciencias e Ingeniería de Computación Universidad Nacional del Sur, Bahía Blanca-Argentina.

Soler, Y. (2009). Aplicación de la visualización dinámica de programas en el diseño de estructuras de datos y el análisis de la complejidad de algoritmos. (Doctor en Ciencias Técnicas), Universidad Central "Marta Abreu" de Las Villas, Santa Clara.

Stasko, J., Domingue, J., Brown, M., & Price, B. (2012). Software Visualization: Programming as a Multimedia Experience.: MIT Press.

Stasko, J., & Lawrence, A. (2007). Empirically Assessing Algorithm Animations as Learning Aids. MIT Press, 25.

Suchan, W., & Smith, T. (2012). Using Ada as a tool to teach problem solving to non-CS majors. Paper presented at the Annual International Conference on Ada.

Ziegler, U., & Crews, T. (2004). An integrated program development tool for teaching and learning how to program. Paper presented at the Technical Symposium on Computer Science Education, Portland.

Published

2019-01-23

How to Cite

Mero Suárez, K. V., Merchán Carreño, E. J., & Mero Suárez, C. R. (2019). Software visualization, an effective alternative in the teaching of computer programming. Sinapsis, 2(13). https://doi.org/10.37117/s.v2i13.156

Most read articles by the same author(s)