Redes neuronales recurrentes como mecanismo de Gestión de Riesgo en mercados de valores

Authors

  • Jefferson Agustín Macías Bravo Universidad Técnica de Manabí
  • Carlos Andrés Mendoza Bravo Universidad Técnica de Manabí
  • Maribel Pérez Pirela. PhD Universidad Técnica de Manabí
  • Ambrosio Tineo Moya. PhD Universidad Técnica de Manabí

DOI:

https://doi.org/10.37117/s.v26i1.1122

Keywords:

Neural networks, Python, Stock markets, Risk management.

Abstract

This paper proposes the application of recurrent neural networks, specifically Long Short-Term Memory (LSTM), to predict the closing prices of NVIDIA stocks. These predictions are used as a risk management mechanism in stock markets. The model includes data collection, cleaning, and preparation, as well as analysis and modeling using Python. Closing prices from the past three years are analyzed, and the results are compared with predictions for the following two days, both graphically and analytically, using metrics such as Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). This approach highlights the importance of predictive analysis as a tool for risk management.

Downloads

Download data is not yet available.

References

Conti, D., Simó, C. & Rodríguez A. (2005). Teoría de carteras de inversión para la diversificación del riesgo: enfoque clásico y uso de redes neuronales artificiales (RNA). Ciencia e Ingeniería, 26(¡), 35-42

Díaz del Río, F. & Peña, J. I. (2017). Redes neuronales artificiales en finanzas. En M. A.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780.

Hull, J. C. (2012). Risk Management and Financial Institutions. John Wiley & Sons.

Kotler, P., & Armstrong, G. (2016). Principios de marketing (16a ed.). Pearson Educación. p. 324.

Mishkin, F. S., & Eakins, S. G. (2015). Financial Markets and Institutions. Pearson.

Murphy, J. J. (1999). Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. New York Institute of Finance.

Smith, J. (2022). Factores de riesgo en el trading financiero. Journal of Financial Markets, 34(2), 40-55.

Published

2025-06-30

How to Cite

Macías Bravo, J. A., Mendoza Bravo, C. A., Pérez Pirela. PhD, M., & Tineo Moya. PhD, A. (2025). Redes neuronales recurrentes como mecanismo de Gestión de Riesgo en mercados de valores. Sinapsis, 26(1). https://doi.org/10.37117/s.v26i1.1122

Issue

Section

Information and Communication Technologies