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Resumen 

La higiene bucodental continúa siendo un desafío de salud pública, especialmente en determinar 

la correcta técnica de cepillado durante la limpieza bucal. Frente a esta problemática, las 

tecnologías emergentes como los sensores inerciales y los algoritmos de inteligencia artificial 

ofrecen nuevas oportunidades para monitorear la actividad del cepillado dental. En la presente 

investigación se realizó un análisis empleando señales capturadas durante la ejecución de la 

actividad de cepillado bucal empleando sensores inerciales (acelerómetro y giroscopio) y modelos 

de aprendizaje profundo (CNN y LSTM). Se empleó una metodología mixta, de tipo aplicada y 

experimental. Se trabajó con muestra de 57 participantes mayores de edad, clasificados en dos 

grupos de acuerdo al correcto cepillado. La recolección de las señales se la realizó mediante 

sensores MetaMotionR, acoplados a cepillos de uso personal. Los datos fueron procesados 

mediante técnicas de limpieza, codificación y escalado para su análisis con modelos CNN, LSTM 

y CNN+LSTM desarrollados en Python, para la recolección de datos se utilizó una aplicación 

móvil, llamada Metabase, dada por MetaMotionR. La fase cualitativa incluyó observación directa 

para complementar la interpretación de patrones de comportamiento. Los resultados obtenidos 

muestran una alta Recall (0.9935), accuracy (0.9965) y F1-score (0.9965), manifestando que un 

modelo de inteligencia artificial es capaz de distinguir/ clasificar los movimientos correctos e 

incorrectos. Se concluye que el sistema representa un paso preliminar en la incorporación de IA 

al monitoreo del cepillado dental. Sin embargo, se identifican limitaciones como la falta de una 

base de datos con patrones específicos de cepillado o sensores de presión, aspectos que deben 

abordarse en investigaciones futuras. 

Palabras clave: Cepillado dental, CNN-LSTM, Deep learning, Salud bucodental, Sensores 

inerciales. 
Abstract 

Oral hygiene continues to be a public health challenge, especially in determining the correct 

brushing technique during oral hygiene. Faced with this problem, emerging technologies such as 

inertial sensors and artificial intelligence algorithms offer new opportunities to monitor tooth 

brushing activity. In this research, an analysis was conducted using signals captured during oral 

brushing using inertial sensors (accelerometer and gyroscope) and deep learning models (CNN 

and LSTM). A mixed methodology, both applied and experimental, was employed. The study 

involved a sample of 57 adult participants, classified into two groups based on their correct 

brushing behavior. Signal collection was performed using MetaMotionR sensors attached to 

personal toothbrushes. The data were processed using cleaning, encoding, and scaling techniques 

for analysis with CNN, LSTM, and CNN+LSTM models developed in Python. A mobile 

application called Metabase, provided by the manufacturer, was used for data collection. The 
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qualitative phase included direct observation to complement the interpretation of behavioral 

patterns. The results obtained show a high Recall (0.9935), Accuracy (0.9965), and F1-score 

(0.9965), demonstrating that an artificial intelligence model is capable of 

distinguishing/classifying correct and incorrect movements. It is concluded that the system 

represents a preliminary step in the incorporation of AI into tooth brushing monitoring. However, 

limitations are identified, such as the lack of a database with specific brushing patterns or pressure 

sensors, aspects that should be addressed in future research. 

Keywords: Tooth brushing, CNN-LSTM, Deep learning, Oral health, Inertial sensors. 

Introducción 

El mantenimiento de una salud bucodental es parte integral del bienestar y su falta de atención 

puede resultar en complicaciones que van desde caries a enfermedades periodontales crónicas. La 

Organización Mundial de la Salud (OMS) estima que aproximadamente 3.500 millones de 

personas en el mundo sufren alguna enfermedad bucodental, siendo la caries en dientes 

permanentes la patología más frecuente (Organización Mundial de la Salud, 2022). Al mismo 

tiempo, reforzar rutinas de prevención, educación e intervención tecnológica sobre higiene bucal 

cobra mayor importancia en niños y adolescentes. 

En países como Ecuador, la situación respecto a la salud bucal refleja avances y desafíos en curso. 

Los datos históricos indican un declive gradual en la prevalencia de caries dental entre escolares 

del 88.2% en 1996 al 75.6% en 2009. Sin embargo, estudios más recientes indican que aún existe 

aproximadamente un 70% de tasa de prevalencia de caries dental entre niños de ocho a diez años 

(Parise-Vasco et al., 2020) lo que indica que los esfuerzos de políticas públicas continúan siendo 

inadecuados para abordar este problema. La situación se agrava por la ausencia de información 

actualizada que permita la toma de decisiones basada en evidencia para el diseño de 

intervenciones (López-Pérez, 2021). Además, Armas-Vega et al. (2023) examinaron la salud 

bucodental de escolares de las Islas Galápagos y hallaron que, pese a las campañas preventivas 

locales, la prevalencia de caries seguía siendo considerablemente alta, lo que subraya la necesidad 

de reforzar programas de educación y control odontológico continuos en esa población insular. 

En este ámbito, el uso de tecnologías emergentes como la inteligencia artificial (IA) y los sensores 

inerciales ofrecen la oportunidad de romper con los paradigmas existentes en el cuidado 

bucodental. El uso de sistemas inteligentes ha sido explorado en otros campos de la medicina, 

como la dermatología o la radiología (Topol, 2019) y en años recientes se comenzó a aprovechar 

en odontología para el control y evaluación de hábitos de higiene bucal. Incorporar sensores 

inerciales a cepillos de dientes que registren movimientos y patrones temporalmente permite 

avanzar hacia métodos personalizados para el aprendizaje y perfeccionamiento de técnicas 

higiénicas orales. 

En un estudio reciente, Chen et al. (2021) alcanzaron una elevada precisión del 99.08% en el 

reconocimiento de técnicas de cepillado utilizando cepillos de dientes inteligentes equipados con 

sensores inerciales, lo que se logró utilizando redes neuronales probabilísticas recurrentes 

(RPNN). Aunque este enfoque logró resultados destacables, investigaciones como la presente 

demuestran que arquitecturas como las redes neuronales convolucionales (CNN) y las de memoria 

a largo y corto plazo (LSTM) también poseen una sólida capacidad para identificar patrones de 

cepillado. De hecho, estas arquitecturas han mostrado un desempeño robusto en distintos 

contextos, lo cual valida su utilidad práctica en sistemas inteligentes de monitoreo de la higiene 

oral.  

Si bien el potencial de la inteligencia artificial en la salud bucodental ha sido ampliamente 

demostrado en investigaciones internacionales, su adopción práctica en América Latina aún 

enfrenta obstáculos significativos. En muchas regiones, los sistemas de IA aplicados al 

diagnóstico o monitoreo del cepillado aún no forman parte de los programas clínicos ni de 

intervención educativa, debido a la escasa infraestructura tecnológica y a la brecha de formación 

digital entre profesionales de la salud. Esta situación contrasta con países donde la IA ya se integra 

en rutinas escolares o clínicas, promoviendo hábitos saludables desde edades tempranas. En este 

sentido, Lira et al. (2023) destacan que intervenir durante la infancia mediante educación 

personalizada y continua no solo es más costo-efectivo, sino que también genera beneficios 
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sostenibles en la calidad de vida bucodental. Por tanto, se requiere no solo validar modelos 

inteligentes, sino también establecer estrategias de implementación en contextos locales. 

A este respecto, Mejía et al. (2022) también mencionan que una técnica deficiente del cepillado 

puede contribuir a la acumulación de placa bacteriana, dando origen a enfermedad cariosa y 

gingivitis crónica. Por esta razón, el uso potencial que ofrecen las tecnologías basadas en IA para 

un diagnóstico temprano y autocorrección constituye un avance importante desde perspectivas 

pedagógicas y asistenciales. 

De esta forma, se parte de una hipótesis: es factible integrar sensores inerciales y modelos de 

inteligencia artificial y esto tendrá un impacto positivo en la evaluación de las técnicas de 

cepillado. Este método no solo proporciona eficacia al diagnóstico, sino que abre posibilidades 

hacia una mayor personalización e implementación estratégica debido a su adaptación al 

comportamiento del usuario. La IA ha sido aplicada con gran éxito en la clasificación del 

movimiento humano (Al-Saffar et al., 2020), particularmente en el ámbito de la salud donde su 

implementación sigue aumentando. 

Si bien se han desarrollado IA en algunos ambientes clínicos, su uso rutinario para la evaluación 

de hábitos, particularmente en poblaciones vulnerables como infantes y adolescentes, está 

estancado. Por eso, en este caso el propósito general de la investigación es evaluar la capacidad 

de los modelos de deep learning para la clasificación de movimientos adecuados o inadecuados 

durante la higiene bucal.  

Material y Métodos 

Este estudio se llevó a cabo utilizando un enfoque mixto que combina componentes cuantitativos 

y cualitativos con el fin de analizar de manera integral la técnica de cepillado. Desde la perspectiva 

cuantitativa, se emplearon los datos capturados mediante los sensores inerciales durante el 

cepillado dental, empleando métricas para evaluar la precisión y sensibilidad del modelo de 

inteligencia artificial. 

El enfoque cualitativo en este caso permitió explicar patrones de comportamiento asociados con 

las técnicas de cepillado que se utilizaron y enriqueció el análisis al proporcionar 

retroalimentación verbal de los participantes monitoreados. 

El tipo de investigación fue aplicada y de diseño experimental, orientada a resolver un problema 

práctico vinculado con la mejora de la salud bucodental mediante el uso de tecnologías 

automatizadas accesibles. Para el procesamiento y análisis de datos, se utilizó Python 3.10, 

empleando bibliotecas como Pandas y NumPy para la gestión de datos, la librería Scikit-learn 

para la evaluación de métricas de clasificación, y TensorFlow/Keras para la implementación y 

entrenamiento de los modelos de aprendizaje profundo basados en redes neuronales 

convolucionales (CNN y LSTM). Todo el proceso fue controlado en un entorno experimental, lo 

que garantizó la replicabilidad y fiabilidad de los resultados obtenidos. 

La población objetivo incluía adultos jóvenes en formación o auto-práctica de procedimientos de 

higiene oral centrándose en la habilidad de control del cepillo. Se identificó que 20 participantes 

voluntarios no poseían buenos hábitos de limpieza luego de ser validados por el dentista mediante 

videos de grabación. 

La clasificación dentro de cada grupo se estructuró en torno a tener rutinas de cuidado oral 

adecuadas o inadecuadas. El primer grupo contenía 57 sujetos con prácticas rutinaria 

normalmente como realizan su cepillado (todo lo que se realiza regularmente). El segundo grupo 

de los 57 sujetos se elige 14 participantes que práctica el cepillado supervisado por medio de un 

video educativo (a través de evaluación clínica). Los participantes fueron seleccionados mediante 

una técnica de muestreo estratificado donde se eligieron individuos en función de 

comportamientos específicos para asegurar la representación proporcional en el comportamiento 

relacionado con las prácticas de higiene oral. Esta segmentación fortaleció el entrenamiento del 

modelo hacia la generalización en lugar de adaptarlo. 

Este estudio adoptó el modelo metodológico CRISP–LM–Q (Proceso Estándar de la Industria 

Cruzada para Máquinas de Aprendizaje con Calidad), una adaptación del modelo tradicional 

CRISP-DM. Es particularmente útil en investigación aplicada que involucra inteligencia artificial, 

aprendizaje automático y procesamiento de señales. Las siguientes fases se completaron: 

Fase 1: Comprender los datos 
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En esta fase, se realizó una exploración de los datos recolectados de los 57 sujetos durante el 

proceso de cepillado dental. Los datos provinieron de dos tipos de sensores: acelerómetros y 

giroscopios, los cuales registraron las señales de movimiento en tres dimensiones: X, Y, y Z. Los 

sujetos participaron en varias pruebas, denominadas trial_1, trial_2, trial_3 y trial_4, bajo 

diferentes condiciones de supervisión, lo que permite analizar su rendimiento tanto en situaciones 

normales como en condiciones supervisadas. 

Los datos de acelerómetro y giroscopio fueron organizados en un DataFrame, donde las columnas 

clave incluyen epoch (ms), time (-14:00), elapsed (s), x-axis (g), y-axis (g), z-axis (g), subject_id, 

y trail. La variable “subject_id” identifica al participante, mientras que trail distingue entre las 

diferentes pruebas realizadas. La columna elapsed (s) indica el tiempo transcurrido desde el inicio 

de la medición, y las columnas de aceleración y giroscopio registran los valores en las tres 

dimensiones (X, Y, Z) durante cada prueba. 

En un análisis preliminar, se identificaron valores nulos en algunas columnas, especialmente en 

aquellos registros correspondientes a movimientos no representativos del cepillado (por ejemplo, 

cuando el sensor se desconecta o cuando se detectaron movimientos no deseados). Este resultado 

llevó a la aplicación de un proceso de limpieza de datos, en el cual se eliminaron los registros 

incompletos y se corrigieron valores atípicos generados por desconexiones del sensor o 

movimientos abruptos. La Figura 1 muestra la ubicación y las coordenadas del sensor en el 

cepillo de dientes, proporcionando un contexto visual sobre cómo se obtuvo la información de las 

señales de acelerómetro y giroscopio durante el cepillado. 

Figura 1. Ubicación y coordenadas del sensor en el cepillo 

 
Fase 2: Preparación de datos 

La fase de preparación de los datos es un paso crucial para asegurar que los datos sean apropiados 

y estén listos para ser utilizados en el modelado. Durante esta fase, se llevaron a cabo varias 

actividades para transformar y estructurar los datos brutos recolectados por los sensores de 

acelerómetro y giroscopio, de manera que puedan ser utilizados en el entrenamiento de los 

modelos de aprendizaje automático. 

Carga y unión de los datos 

El primer paso en la preparación de los datos fue la carga y unión de las señales de acelerómetro 

y giroscopio para cada uno de los 57 sujetos. Para ello, se implementó una función que permitió 

leer los archivos CSV correspondientes a cada sujeto y prueba, y combinarlos en un único 

DataFrame (Estructura de datos en la librería Pandas). Este DataFrame contenía las señales de 

acelerómetro (en los tres ejes: X, Y, Z) y de giroscopio (también en los tres ejes: X, Y, Z), además 

de la información adicional, como el subject_id (que identifica al participante) y trail (que indica 

los diferentes ensayos o pruebas por subject). 

Se verificó que los datos de acelerómetro y giroscopio tuvieran la misma longitud para cada 

prueba (mediante un proceso de segmentación), garantizando que ambos conjuntos de datos 

estuvieran sincronizados en cuanto a las muestras registradas.  

Segmentación por Ventanas 

Una vez cargados y combinados los datos de todos los sujetos, el siguiente paso fue la 

segmentación de las señales en ventanas de 2 segundos y 3 segundos. La cantidad de muestras de 

cada ventana se definió en función de la frecuencia de muestreo de los sensores, que era de 50 

Hz. Esto significa que cada ventana de datos contiene 100 muestras (50 muestras por segundo 

durante 2 segundos). Además, se utilizó un 50% de solapamiento entre las ventanas para mejorar 

la captura de patrones continuos en los movimientos durante el cepillado. 

http://www.itsup.edu.ec/sinapsis


Revista Sinapsis. ISSN 1390 – 9770 

Periodo. Julio – Diciembre 2025 

 Vol. 27, Nro. 2, Publicado 2025-12-31 

 

https://www.itsup.edu.ec/sinapsis 
 

La segmentación permitió transformar el conjunto de datos continuo en una serie de ventanas 

temporales que se utilizarían como entradas para los modelos de aprendizaje automático. Al 

aplicar este método, se generaron un total de 10776 ventanas de datos para todos los sujetos, las 

cuales fueron etiquetadas con la actividad correspondiente (normal o supervisada). 

Normalización de los Datos 

Una parte clave de la preparación de los datos fue la normalización, dado que las señales de 

acelerómetro y giroscopio pueden tener diferentes rangos y unidades de medida (por ejemplo, la 

aceleración se mide en g y la rotación en deg/s), era necesario normalizar los datos para asegurar 

que todas las características estuvieran en la misma escala. 

Se utilizó el StandardScaler de sklearn para normalizar las características de cada ventana de 

datos. Esto evitó que las diferencias en las escalas de las características afectaran negativamente 

el desempeño de los modelos. La normalización por característica es esencial para el rendimiento 

de los algoritmos de aprendizaje automático, especialmente en redes neuronales y otros modelos 

sensibles a la escala de los datos. 

Generación del conjunto de datos 

El resultado de la segmentación y normalización fue un conjunto de datos estructurado y listo 

para el modelado. Se generaron dos matrices principales: X y Y. La matriz X contiene las ventanas 

de datos normalizadas, con una forma de (10776, 100, 6), donde 10776 es el número de ventanas 

generadas, 100 es el tamaño de cada ventana (equivalente a 2 segundos de datos), y 6 es el número 

de características (tres para el acelerómetro y tres para el giroscopio). La matriz y contiene las 

etiquetas correspondientes a cada ventana de datos, con una forma de (10776), donde cada valor 

indica si la ventana corresponde a una prueba normal o supervisada. 

Fase 3: Modelado 

Modelo CNN 

El modelo de Convolutional Neural Network (CNN) se entrenó utilizando datos segmentados en 

ventanas de 2 segundos y normalizados para las señales de acelerómetro y giroscopio. El modelo 

mostró un buen desempeño durante un entrenamiento inicial, las primeras épocas alcanzaron una 

accuracy de 85.19% de entrenamiento. A medida que el modelo avanzaba en el número de épocas, 

la accuracy de la validación aumentó significativamente, alcanzando un valor máximo de 99.98% 

en la época 150, lo que indica que el modelo fue capaz de generalizar bien en los datos de prueba. 

En términos de pérdida, el modelo mostró una reducción considerable desde el inicio del 

entrenamiento, pasando de una pérdida de 0.3337 a 0.0009 en la última época, lo que demuestra 

una convergencia estable y una buena optimización durante el entrenamiento. Esto se reflejó en 

las métricas de validación, con la accuracy de validación alcanzando un 99.12%. 

El modelo también presentó un buen desempeño en cuanto a la reducción de la pérdida de 

clasificación, manteniendo un comportamiento estable a lo largo de las épocas. Sin embargo, se 

observó cierta variabilidad en las métricas de validación hacia las últimas épocas. 

Modelo LSTM 

El modelo LSTM (Long Short-Term Memory) fue entrenado utilizando los datos segmentados en 

ventanas de 2 segundos y normalizados para las señales de acelerómetro y giroscopio. Este 

modelo está diseñado para aprender secuencias temporales, lo que lo hace adecuado para capturar 

las dinámicas temporales de los datos de movimiento durante el cepillado. 

El modelo mostró un desempeño robusto durante las épocas de entrenamiento, alcanzando una 

accuracy de 83.15% en la primera época. A medida que avanzaron las épocas, la accuracy de 

validación aumentó significativamente, llegando a un máximo de 100.00% en la época 150. Este 

resultado indica que el modelo fue capaz de generalizar bien a los datos de validación y aprender 

patrones útiles de las señales temporales. 

En términos de pérdida, el modelo comenzó con una pérdida de 0.4517 en la primera época, y a 

lo largo del entrenamiento, esta disminuyó considerablemente hasta llegar a 0.0001 en la época 

150, mostrando una convergencia estable. La accuracy de validación, que fluctuó entre el 91.09% 

y 98.28%, refleja que el modelo estuvo constantemente mejorando su capacidad de clasificación 

a medida que avanzaba el entrenamiento. Este comportamiento indica que el modelo fue capaz 

de aprender y generalizar de manera efectiva los patrones del cepillado, aunque podría 
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beneficiarse de algunos ajustes, como regularización adicional o más datos, para mejorar la 

estabilidad. 

Modelo combinado CNN + LSTM 

El modelo combinado de CNN + LSTM fue entrenado para capturar tanto las características 

locales (usando la capa Conv1D) como las dependencias temporales (con las capas LSTM) en las 

señales de acelerómetro y giroscopio. Este enfoque híbrido aprovechó lo mejor de ambos mundos, 

permitiendo que el modelo aprendiera patrones espaciales a nivel de ventana temporal (CNN) y 

también capturara la dinámica temporal de los movimientos del cepillo a través de las secuencias 

(LSTM). 

El modelo CNN + LSTM consistió en una capa convolucional 1D seguida de un MaxPooling, lo 

que permitió extraer características locales de las señales. Posteriormente, se incorporaron capas 

LSTM para modelar las relaciones secuenciales en los datos. Finalmente, se añadió una capa 

densa con salida softmax, adecuada para tareas de clasificación binaria, como la detección de 

cepillado normal o supervisada. La arquitectura completa tuvo un total de 80.386 parámetros 

entrenables. 

Durante el entrenamiento, el modelo mostró una accuracy inicial de 86.32% en la época 1, y a 

medida que avanzaban las épocas, la accuracy aumentó significativamente. Después de 139 

épocas de entrenamiento, la accuracy alcanzó un 100.0%, lo que indica que el modelo fue capaz 

de aprender los patrones de movimiento del cepillo con gran exactitud. La pérdida de 

entrenamiento también disminuyó progresivamente, pasando de 0.3275 en la época 1 a 0.0005 en 

la época 139, lo que refleja la optimización continua del modelo. 

En cuanto a la accuracy de validación, el modelo también mostró un excelente desempeño, 

alcanzando un valor máximo de 99.35% en la época 143. Aunque en algunas épocas se observó 

una ligera caída en la accuracy de validación, el rendimiento general siguió siendo muy alto, lo 

que sugiere que el modelo estaba aprendiendo correctamente los patrones de los datos. 

Los valores de accuracy y pérdida obtenidos durante el entrenamiento son muy prometedores, lo 

que indica que el modelo combinado CNN + LSTM logró aprender los patrones tanto espaciales 

como temporales de las señales de acelerómetro y giroscopio. La alta accuracy en el conjunto de 

validación también sugiere que el modelo es capaz de generalizar bien a datos nuevos. 

Aunque hubo algunas fluctuaciones menores en la accuracy de validación en ciertas épocas, el 

modelo mostró un comportamiento estable y convergió a un rendimiento excelente al final del 

entrenamiento. Esto es indicativo de que el modelo es muy efectivo para clasificar correctamente 

el cepillado normal y supervisado, basado en las señales de los sensores. 

La fase de implementación y evaluación del modelo: El rendimiento del sistema se evaluó 

utilizando métricas cuantitativas incluyendo precision, recall, accuracy, F1-score, especificidad 

con ajuste de hiperparámetros orientado a maximizar la capacidad predictiva. La evaluación del 

experimento se realizó una comparación de métricas de los modelos. 

Entre las estrategias más notables implementadas está la observación directa, por medio de la cual 

se pudieron registrar cualitativamente el comportamiento de los sujetos durante la actividad de 

cepillado dental. La observación fue complementada con una captura de datos, considerada 

esencial, que consistió en un dispositivo portátil montado sobre los cepillos capaces de medir 

aceleraciones y giros. Además, se realizó video grabación y/o fotos durante las sesiones de 

cepillado lo cual posibilitó una posterior revisión sobre cada usuario asegurando que existía 

coincidencia entre los datos automáticos y las imágenes obteniendo veracidad. 

En cuanto a los dispositivos utilizados, se escogió el sensor inercial de MetaMotionR debido a su 

bajo consumo energético, uso de energía móvil, y precisión (MbientLab, 2024). Con el fin de 

facilitar su uso y no limitar la experiencia del cepillado dental, estos sensores fueron adheridos a 

cepillos dentales estándar. Para el procesamiento de los datos, se llevaron a cabo trabajos en 

Python 3.10 donde scripts fueron creados para procesar información con ayuda de bibliotecas 

especializadas como pandas y numpy en manipulación de datos, scikit-learn para tareas de 

machine learning, así como tensorflow para la creación de modelos basados en redes neuronales 

profundas como Convolutional Neural Networks (CNN) o Long Short-Term Memory (LSTM). 

La aplicación Metabase fue utilizado para la recolección de los valores del sensor, lo cual genero 

un archivo en formato csv. 
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La evaluación del rendimiento del modelo de clasificación y la veracidad de los patrones 

detectados requería realizar un análisis estadístico que se condujera con los datos obtenidos.  

Para evaluar el rendimiento del modelo de inteligencia artificial desarrollado, se utilizaron cuatro 

métricas: precision (ver Formula 1), recall (ver Formula 2), accuracy (ver Formula 3) y F1-Score 

(ver Formula 4). La precisión se calculó como la proporción de verdaderos positivos sobre el total 

de predicciones positivas, es decir, la capacidad del modelo para clasificar correctamente los 

cepillados apropiados entre todos los casos identificados como tales. Por su parte, la sensibilidad 

(también conocida como recall) se definió como la proporción de verdaderos positivos respecto 

al total de casos realmente positivos, lo que permite medir qué tan eficazmente el modelo 

identifica los cepillados correctos entre todos los que realmente lo son. La exactitud (conocida 

como Accuracy) mide el porcentaje, sumando las predicciones verdaderas positivos sobre la suma 

de todas las predicciones del caso evaluados. F1-score calcula el rendimiento del producto entre 

precisión y sensibilidad sobre la suma de las mismas métricas. Estos cálculos se realizaron a partir 

de la matriz de confusión generada durante la etapa de validación del modelo. Se efectúo un 

control estadístico mediante un nivel de significancia del 5% (p < 0.05), con el fin de garantizar 

la robustez metodológica y la validez de los resultados obtenidos. 

Formula 1. Precisión (Precision) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑉𝑃

𝑉𝑃 + 𝐹𝑃
 

Nota: ¿Qué tan confiable es el modelo cuando dice que un cepillado fue adecuado? 

Se define como la proporción de verdaderos positivos (VP) frente al total de predicciones 

positivas (VP + FP). Esta métrica responde a la pregunta: ¿Qué tan confiable es el modelo cuando 

predice que un cepillado fue adecuado? 

Formula 2. Sensibilidad (Recall) 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑 =
𝑉𝑃

𝑉𝑃 + 𝐹𝑁
 

Nota: ¿Qué tan bueno es el modelo para encontrar todos los cepillados realmente adecuados? 

Representa la proporción de verdaderos positivos frente al total de casos realmente positivos (VP 

+ FN). Evalúa la capacidad del modelo para identificar todos los cepillados correctos. ¿Qué tan 

bueno es el modelo para encontrar todos los cepillados realmente adecuados? 

Formula 3. Exactitud (Accuracy) 

𝐸𝑥𝑎𝑐𝑡𝑖𝑡𝑢𝑑 =
𝑉𝑃 + 𝑉𝑁

𝑉𝑃 + 𝑉𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Nota: ¿Qué tan efectivo es el modelo para clasificar adecuadamente tanto los casos positivos 

como los negativos? 

Es la relación entre las predicciones acertadas (verdaderos positivos y verdaderos negativos) y el 

total de casos analizados. Evalúa el rendimiento general del modelo para determinar 

correctamente todas las clases que están presentes. 

Formula 4. F1-score  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
𝑥(2) 

Nota: ¿Cuán efectivo es el modelo para identificar correctamente los casos positivos, sin cometer 

muchos errores y manteniendo un balance entre precisión y sensibilidad? 

Expresa la media armónica entre la sensibilidad y la precisión, proporcionando un único valor 

que sintetiza el equilibrio entre las dos. Es útil cuando las clases están desproporcionadas y se 

busca un balance entre detectar los positivos y prevenir los falsos positivos. 

Esta investigación todos los participantes dieron consentimiento informado. La confianza y 

anonimato de los datos personales se mantuvo mediante la anonimización de registros, así como 

la extracción intelectual de la información a través de seudónimos para garantizar la 

confidencialidad. Además, se garantizó que la participación en la investigación no implicara 

riesgo físico o psicológico, y que los sensores utilizados no interferirían con su cuidado durante 

las sesiones de cepillado. 

Resultados 
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Evaluación del modelo con señal Acelerómetro y ventanas de 2 segundos, 50% 

solapamiento. 

Modelo CNN 

Durante la fase de evaluación del modelo Convolutional Neural Network (CNN) aplicado al 

análisis bucodental mediante sensores inerciales, se obtuvieron resultados que evidencian la 

capacidad del modelo para distinguir entre actividades "normal" y "supervisada". La matriz de 

confusión muestra que de un total de 768 instancias reales clasificadas como "normal", el modelo 

identificó correctamente 762 y cometió 6 errores. En el caso de la clase "supervisada", de 394 

instancias, 390 fueron correctamente clasificadas y solo 4 fueron mal etiquetadas. Esta 

distribución indica un bajo índice de error y una alta efectividad en ambas clases. 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9948 0.9922 0.9935 - 768 

supervisada 0.9848 0.9898 0.9873 - 394 

Weighted avg 0.9914 0.9914 0.9912 0.9912 1162 

 

En cuanto a las métricas de evaluación, el modelo alcanzó una precisión del 99.48% para la clase 

normal y del 98.48% para la clase "supervisada", lo que significa que prácticamente todas las 

predicciones positivas realizadas para cada clase fueron correctas. Asimismo, el recall fue del 

99.22% en "normal" y del 98.98% en "supervisada", demostrando una gran capacidad para 

recuperar casi todas las instancias verdaderas de cada categoría. El F1-score, que combina 

precision y recall, fue de 99.35% para "normal" y de 98.73% para "supervisada", ratificando la 

solidez del desempeño. 

Además, el accuracy global del modelo fue del 99.14%, reflejando que casi la totalidad de las 

predicciones realizadas por el modelo fueron correctas. El promedio ponderado de las métricas es 

calculado con la fórmula 5, para precision, recall y F1-score también se situaron en 99.14%, lo 

que muestra que el modelo mantiene un rendimiento equilibrado incluso cuando las clases tienen 

diferente número de muestras. 

Formula 5. Promedio ponderado (Weighted average) 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑔 =
(∑𝑖 metric 𝑖 × support 𝑖)𝑛𝑜𝑟𝑚𝑎𝑙 + (∑𝑖 metric 𝑖 × support 𝑖)supervisada

∑𝑖 support 𝑖(𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑎𝑑𝑎)
 

Figura 1. Matriz de Confusión, modelo CNN, empleando la señal del acelerómetro, ventanas de 

2 segundos. 

 

Modelo LSTM 

Las métricas de evaluación del modelo Long Short-Term Memory (LSTM) evidencian un 

rendimiento muy variable, el modelo tuvo una precisión del 96.18% normal y 96.55% 

supervisada, mientras que recall 98.31% normal y 92.39% supervisada, F1-score para la clase 
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normal 97.23%, mientras que la clase “supervisada” alcanzó 94.42%, reflejando una ligera 

disminución en sensibilidad sin afectar significativamente la exactitud general. El modelo logró 

un accuracy total del 96.30%, lo que confirma su eficacia es menor para la clasificación de 

actividades bucodentales a partir de datos secuenciales de sensores inerciales. 

Tabla 2. Evaluación del modelo LSTM 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9618 0.9831 0.9723 - 768 

supervisada 0.9655 0.9239 0.9442 - 394 

Weighted avg 0.9630 0.9630 0.9628 0,9429 1162 

La matriz de confusión del modelo LSTM muestra un rendimiento muy sólido, con 755 

clasificaciones correctas para la clase “normal” y 364 para la clase “supervisada”. Se cometieron 

13 errores al predecir como “supervisada” muestras normales y 30 al predecir como “normal” las 

muestras supervisadas. Estas cifras se reflejan en métricas de medio nivel manteniendo un 

equilibrio del promedio ponderado entre las métricas. 

Figura 2. Matriz de confusión del modelo LSTM, empleando la señal del acelerómetro, ventanas 

de 2 segundos. 

 

Modelo CNN + LSTM 

El modelo combinado CNN + LSTM obtuvo resultados sobresalientes, alcanzando un accuracy 

del 98.97%, lo que indica una clasificación precisa de los datos bucodentales recogidos mediante 

sensores inerciales. La clase “normal” alcanzó un F1-score de 99.22% y la clase “supervisada” 

un 98.48%, con una precisión de 99.48% normal y 97.99% supervisada y recall con valores muy 

equilibrado de 98.98%. Estas métricas reflejan que la combinación de la extracción espacial de 

CNN con la modelación secuencial de LSTM permite una clasificación robusta, generalizando 

eficazmente sobre los datos de entrada. El promedio ponderado se mantiene en 98.97% en todas 

las métricas respectivamente, consolidando a esta arquitectura como la más precisa entre los 

modelos evaluados. 

Tabla 3. Evaluación CNN + LSTM 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9948 0.9896 0.9922 - 768 

supervisada 0.9799 0.9898 0.9848 - 394 

Weighted avg 0.9897 0.9897 0.9897 0,9897 1162 

La matriz de confusión del modelo combinado CNN + LSTM refleja un rendimiento excepcional 

en la clasificación de actividades bucodentales. De las 768 muestras reales clasificadas como 

“normal”, 760 fueron correctamente identificadas y solo 8 fueron clasificadas erróneamente como 

“supervisada”. En cuanto a la clase “supervisada”, de un total de 394 muestras, 390 fueron 

correctamente clasificadas y únicamente 4 resultaron mal etiquetadas. Estos valores confirman la 

efectividad del modelo híbrido, el cual combina la capacidad de detección espacial de CNN con 
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la sensibilidad secuencial de LSTM, logrando minimizar los errores de clasificación en ambas 

categorías.  

Figura 3. Matriz de confusión CNN + LSTM, empleando la señal del acelerómetro, ventanas de 

2 segundos. 

 

Tabla 4.  Resultados empleando la señal del acelerómetro, ventanas de 2 segundos. 

Modelo Accuracy Precisión Recall F1-score 

CNN 0.9914 0.9914 0.9914 0.9914 

LSTM 0.9630 0.9630 0.9630 0.9628 

CNN+LSTM 0.9897 0.9897 0.9897 0.9897 

Evaluación del modelo con señal Giroscopio y ventanas de 2 segundos, 50% solapamiento. 

Modelo CNN  

Se obtuvo resultados no muy favorables, de las 788 muestras reales clasificadas como “normal”, 

754 fueron correctamente identificadas y solo 34 fueron clasificadas erróneamente como 

“supervisada”. En cuanto a la clase “supervisada”, de un total de 394 muestras, 364 fueron 

correctamente clasificadas y únicamente 30 resultaron mal etiquetadas, La clase “normal” obtuvo 

un F1-score de 95.93%, mientras que la clase “supervisada” alcanzó 91.92%, el Recall en la clase 

“normal” se obtuvo 95.69%, mientras en la clase “supervisada” se obtuvo un valor favorable de 

92.39%, en accuracy total del 94.59%. 

Tabla 5. Evaluación CNN, empleando la señal del giroscopio, ventanas de 2 segundos. 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9617 0.9569 0.9593 - 788 

supervisada 0.9146 0.9239 0.9192 - 394 

Weighted avg 0.9460 0.9459 0.9459 0.9459 1182 

 

Figura 4. Matriz de confusión CNN, empleando la señal del giroscopio, ventanas de 2 segundos. 
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Modelo LSTM 

El modelo Long Short-Term Memory (LSTM) tuvo un desempeño inferior en todas las métricas, 

lo que sugiere que, al trabajar solo con señales del acelerómetro, el modelo basado en memoria 

secuencial pierde efectividad frente a arquitecturas convolucionales o mixtas. Esto podría 

atribuirse a la menor complejidad temporal de las señales cuando no están enriquecidas con 

giroscopio.  

Tabla 6. Evaluación LSTM, empleando la señal del giroscopio, ventanas de 2 segundos. 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9442 0.9454 0.9448 - 788 

supervisada 0.8906 0.8883 0.8895 - 394 

Weighted avg 0.9264 0.9264 0.9264 0.9126 1182 

Figura 5. Matriz de confusión LSTM, empleando la señal del giroscopio, ventanas de 2 segundos. 

 

Modelo CNN + LSTM 

El acelerómetro por sí solo proporciona una base suficiente para una clasificación precisa, 

especialmente con modelos CNN o CNN+LSTM. Sin embargo, estos resultados confirman que 

el acelerómetro es una fuente válida y eficiente para la detección de patrones en tareas de cepillado 

dental supervisado vs. normal. 

Tabla 7. Evaluación CNN + LSTM, empleando la señal del giroscopio, ventanas de 2 segundos. 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9617 0.9569 0.9593 - 788 

supervisada 0.9146 0.9239 0.9192 - 394 

Weighted avg 0.9460 0.9459 0.9459 0.9459 1182 

Figura 6. Matriz de confusión CNN + LSTM, empleando la señal del giroscopio, ventanas de 2 

segundos. 
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Tabla 8.  Resultados empleando la señal del giroscopio, ventanas de 2 segundos. 

Modelo Accuracy Precisión Recall F1-score 

CNN 0.9459 0.9460 0.9459 0.9459 

LSTM 0.9264 0.9264 0.9264 0.9264 

CNN+LSTM 0.9662 0.9666 0.9662 0.9663 

Evaluación del modelo con señal Giroscopio + Acelerómetro con ventanas de 2 segundos. 

Modelo CNN  

El modelo Convolutional Neural Network (CNN) se obtuvieron resultados satisfactorios que 

evidencian la capacidad del modelo para distinguir entre actividades "normal" y "supervisada". 

La matriz de confusión muestra que de un total de 1762 instancias reales clasificadas como 

"normal", el modelo identificó correctamente 1756 y 6 errores. En el caso de la clase 

"supervisada", de 394 instancias, 381 fueron correctamente clasificadas y solo 13 fueron 

etiquetadas erróneas. Esta distribución indica un bajo índice de error y una alta efectividad en 

ambas clases, para diferenciar de forma efectiva entre ambas categorías a partir de los datos de 

sensores inerciales. 

El modelo CNN ha demostrado ser una herramienta altamente eficaz y confiable para la 

clasificación de actividades bucodentales a partir de datos de sensores inerciales. Su capacidad 

para identificar patrones complejos con bajo margen de error lo convierte en una opción sólida 

para aplicaciones prácticas en contextos de clasificación. 

Tabla 9. Evaluación del modelo CNN, empleando la señal combinada del acelerómetro y del 

giroscopio, ventanas de 2 segundos. 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9927 0.9966 0.9946 - 1762 

supervisada 0.9845 0.9670 0.9757 - 394 

Weighted avg 0.9912 0.9912 0.9912 0.9912 2156 

Figura 7. Matriz de confusión CNN, empleando la señal combinada del acelerómetro y del 

giroscopio, ventanas de 2 segundos. 

 

Modelo LSTM 

Las métricas evidencian un rendimiento promedio confiable, con valores equilibrados entre 

precision, recall y F1-score para ambas clases, F1-score de 98.69% en clase normal, reflejando 

una ligera disminución en recall 98.64%, sin afectar significativamente la precisión en general. 

El modelo logró un accuracy total del 97.87%, lo que confirma su eficacia para la clasificación 

de actividades bucodentales a partir de datos secuenciales de sensores inerciales. 
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Tabla 10. Evaluación del modelo LSTM, empleando la señal combinada del acelerómetro y del 

giroscopio, ventanas de 2 segundos. 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9875 0.9864 0.9869 - 1762 

supervisada 0.9394 0.9442 0.9418 - 394 

Weighted avg 0.9787 0.9787 0.9787 0,9787 2156 

La matriz de confusión del modelo LSTM muestra un rendimiento muy sólido, con 1738 

clasificaciones correctas para la clase “normal” y 372 para la clase “supervisada”. Se cometieron 

24 errores al predecir como “supervisada” muestras normales y 22 al predecir como “normal” las 

muestras supervisadas. Estas cifras se reflejan en métricas el nivel: precision del 98.75% para 

“normal” y 93.94% para “supervisada”, con un F1-score promedio ponderado de 97.87%. En 

conjunto, el modelo demuestra una capacidad efectiva para distinguir entre ambas clases con un 

accuracy general del 97.87%, manteniendo un equilibrio adecuado entre precisión y sensibilidad. 

Figura 8. Matriz de confusión LSTM, empleando la señal combinada del acelerómetro y del 

giroscopio, ventanas de 2 segundos. 

 

Modelo CNN + LSTM 

Con este se obtuvo resultados sobresalientes, alcanzando un accuracy del 99.35%, lo que indica 

una clasificación altamente precisa de los datos bucodentales recogidos mediante sensores 

inerciales. La clase “normal” alcanzó un F1-score de 99,60% y la clase “supervisada” un 98.24%, 

la precision en la clase normal obtuvo 99.83% y supervisada 97.26%, mientras que recall en la 

clase normal 99,38% y supervisado 99.24%. Estas métricas reflejan que la combinación de la 

extracción espacial de CNN con la modelación secuencial de LSTM permite una clasificación 

robusta, generalizando eficazmente sobre los datos de entrada. El promedio ponderado se 

mantiene en 99.35% y 99.36% respectivamente, consolidando a esta arquitectura como la más 

precisa entre los modelos evaluados. 

Tabla 11. Evaluación CNN + LSTM, empleando la señal combinada del acelerómetro y del 

giroscopio, ventanas de 2 segundos. 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9983 0.9938 0.9960 - 1762 

supervisada 0.9726 0.9924 0.9824 - 394 

Weighted avg 0.9936 0.9935 0.9935 0.9855 2156 

La matriz de confusión del modelo combinado CNN + LSTM refleja un rendimiento excepcional 

en la clasificación de actividades bucodentales. De las 1762 muestras reales clasificadas como 

“normal”, 1751 fueron correctamente identificadas y solo 11 fueron clasificadas erróneamente 

como “supervisada”. En cuanto a la clase “supervisada”, de un total de 394 muestras, 391 fueron 
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correctamente clasificadas y únicamente 3 resultaron mal etiquetadas. Estos valores confirman la 

efectividad del modelo híbrido, el cual combina la capacidad de detección espacial de CNN con 

la sensibilidad secuencial de LSTM, logrando minimizar los errores de clasificación en ambas 

categorías. 

Figura 9. Matriz de confusión LSTM, empleando la señal combinada del acelerómetro y del 

giroscopio, ventanas de 2 segundos. 

 
Tabla 12. Resultados empleando la señal combinada del acelerómetro y del giroscopio, ventanas 

de 2 segundos. 

Modelo Accuracy Precisión Recall F1-score 

CNN 0.9912 0.9912 0.9912 0.9912 

LSTM 0.9787 0.9787 0.9787 0.9787 

CNN + LSTM 0.9935 0.9936 0.9935 0.9935 

 

Resumen de la evaluación de los resultados con ventanas de 2 segundo y 50% solapamiento. 

La comparación de las métricas de rendimiento entre los modelos CNN, LSTM y la arquitectura 

combinada CNN+LSTM revela que este último ofrece el mejor desempeño global utilizando la 

combinación de las señales accelerometer + gyroscope.  

Tabla 13. Comparación de resultado de los modelos de 2 segundo (100 muestra) 

Señales Accelerometer Gyroscope Accelerometer +Gyroscope 

Algoritmo Accuracy Recall F1-score Accuracy Recall 
F1-

score 
Accuracy Recall F1-score 

CNN 0.9914 0.9914 0.9914 0.9459 0.9459 0.9459 0.9912 0.9912 0.9912 

LSTM 0.9630 0.9630 0.9628 0.9264 0.9264 0.9264 0.9787 0.9787 0.9787 

CNN+LSTM 0.9897 0.9897 0.9897 0.9662 0.9662 0.9663 0.9935 0.9935 0.9935 

 

Evaluación del modelo con señal Giroscopio + Acelerómetro con ventana de 3 segundo. 

Modelo CNN  

El modelo logró resultados satisfactorios que demuestran su habilidad para diferenciar entre las 

actividades "normal" y "supervisada". La matriz de confusión figura 10 revela que, de 1162 casos 

reales clasificados como "normal", el modelo identificó correctamente 1145 y cometió 17 errores. 

De 261 instancias de la clase "supervisada", se clasificaron correctamente 255 y solo 6 fueron 

etiquetadas incorrectamente. Esta distribución muestra una elevada eficacia en las dos categorías 

y un bajo índice de error. 

El modelo CNN ha probado ser un instrumento sumamente confiable y eficaz para clasificar 

actividades bucodentales a partir de datos obtenidos por sensores inerciales. Su habilidad para 

detectar patrones complejos con un margen de error mínimo lo hace una opción sólida para 

aplicaciones prácticas en escenarios clínicos. 
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Tabla 14. Resultado de CNN, empleando la señal combinada del acelerómetro y del giroscopio, 

ventanas de 3 segundos. 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9948 0.9854 0.9918 - 1162 

supervisada 0.9375 0.9770 0.9568 - 261 

Weighted avg 0.9843 0.9838 0.9840 0.9838 1423 

 

Figura 10. Matriz de confusión CNN, empleando la señal combinada del acelerómetro y del 

giroscopio, ventanas de 3 segundos. 

 
Modelo LSTM 

Las métricas muestran un desempeño no confiable, con cifras muy variante entre la precision, 

recall y F1-score para las dos clases. La clase "normal" logró un F1-score de 99.05%, en tanto 

que la clase "supervisada" llegó a 95.85%; este modelo mostró reducción en la precisión teniendo 

un impacto notable en la accuracy en general. El modelo alcanzó una precision total del 98.45%, 

lo que demuestra meno eficiencia en la clasificación de actividades bucodentales usando datos 

secuenciales de sensores inerciales. 

Tabla 15. Resultado de LSTM, empleando la señal combinada del acelerómetro y del giroscopio, 

ventanas de 3 segundos. 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9939 0.9871 0.9905 - 1162 

supervisada 0.9442 0.9732 0.9585 - 261 

Weighted avg 0.9848 0.9845 0.9846 0.9845 1423 

 

El desempeño del modelo LSTM, según su matriz de confusión, es muy sólido, con 1162 

clasificaciones precisas para la categoría "normal" y 261 para la "supervisada". Se cometieron 15 

errores al pronosticar las muestras supervisadas como "normales" y 7 al pronosticar las muestras 

normales como "supervisadas". Estas cifras se ven en métricas de alto nivel: una precision del 

99.39% para "normal" y del 94.42% para "supervisada", así como un F1-score promedio del 

98.46%. En resumen, el modelo muestra una accuracy del 98,45%.  

Figura 11. Matriz de confusión LSTM, empleando la señal combinada del acelerómetro y del 

giroscopio, ventanas de 3 segundos. 
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Modelo CNN + LSTM 

Se lograron resultados excepcionales con este, llegando a un 99.65% de accuracy (exactitud), lo 

que significa una clasificación muy precisa de los datos bucodentales recolectados a través de 

sensores inerciales. La clase "normal" obtuvo un puntaje F1-acore de 99.78% y la clase 

"supervisada" uno de 99.05%, con cifras muy balanceada en recall en las dos clases. Estos 

parámetros demuestran que la conjunción de la extracción espacial de CNN + LSTM posibilita 

una clasificación sólida, que generaliza efectivamente a partir de los datos iniciales. El promedio 

macro y el ponderado se sostienen en 99.65%, lo que confirma a esta arquitectura como la más 

exacta entre los modelos analizados. 

Tabla 16. Resultado de CNN + LSTM, empleando la señal combinada del acelerómetro y del 

giroscopio, ventanas de 3 segundos. 

Clase Precision Recall F1-score Accuracy Soporte 

normal 0.9991 0.9966 0.9978 - 1162 

supervisada 0.9848 0.9962 0.9905 - 261 

Weighted avg 0.9965 0.9965 0.9965 0.9965 1423 

El modelo combinado CNN + LSTM muestra un desempeño sobresaliente en la clasificación de 

actividades bucodentales, según lo indica su matriz de confusión. De un total de 1162 muestras 

reales, clasificadas como "normal", 1158 fueron identificadas correctamente y 4 fueron 

clasificadas equivocadamente como "supervisada". Con respecto a la clase "supervisada" de 261 

muestras en total, 260 fueron clasificadas adecuadamente y solo 1 se etiquetaron incorrectamente. 

La eficacia del modelo híbrido, que mezcla la habilidad de detección espacial de las CNN con la 

sensibilidad secuencial de las LSTM, se confirma con estos valores, ya que consigue reducir al 

mínimo los errores de clasificación en los dos grupos. 

Figura 12. Matriz de confusión CNN + LSTM, empleando la señal combinada del acelerómetro 

y del giroscopio, ventanas de 3 segundos. 

 

http://www.itsup.edu.ec/sinapsis


Revista Sinapsis. ISSN 1390 – 9770 

Periodo. Julio – Diciembre 2025 

 Vol. 27, Nro. 2, Publicado 2025-12-31 

 

https://www.itsup.edu.ec/sinapsis 
 

Tabla 17. Resultado de gyroscope + accelerometer, empleando la señal combinada del 

acelerómetro y del giroscopio, ventanas de 3 segundos. 

Modelo Accuracy Precisión Recall F1-score 

CNN 0.9838 0.9843 0.9838 0.9840 

LSTM 0.9845 0.9848 0.9845 0.9846 

CNN + LSTM 0.9965 0.9965 0.9965 0.9965 

 

Resumen de la evaluación de los resultados con ventanas de 2 segundo y 3 segundo, 50% 

solapamiento. 

La comparación de las métricas de rendimiento entre los modelos CNN, LSTM y la combinada 

CNN+LSTM, en la tabla 18 detalla los resultados de las señales accelerometer + gyroscope con 

ventana de 2 segundo la métrica de accuracy el modelo CNN+LSTM tiene al mayo valor 0.9882, 

en el modelo CNN en la métrica recall tiene la sensibilidad mayor de 0,9876. Prueba ventana de 

3 segundo el modelo CNN+LSTM tiene todas las métricas el mismo valor de 0.9951.  

Tabla 18. Comparación de resultado de las señales accelerometer + gyroscope (2s) y (3s). 

Señales Accelerometer + Gyroscope (3s) Accelerometer +Gyroscope(2s) 

Algoritmo Accuracy Recall F1-score Accuracy Recall F1-score 

CNN 0.9838 0.9838 0.9840 0.9912 0.9912 0.9912 

LSTM 0.9845 0.9845 0.9846 0.9787 0.9787 0.9787 

CNN+LSTM 0.9965 0.9965 0.9965 0.9935 0.9935 0.9935 

Para complementar el análisis del desempeño de los modelos de aprendizaje profundo, se realizó 

una comparación de la duración del cepillado dental entre los grupos con actividad normal y 

aquellos con cepillado supervisado. La Figura 13 presenta un gráfico de caja que ilustra 

visualmente la distribución de los tiempos registrados en cada grupo, permitiendo observar tanto 

la tendencia central como la dispersión y presencia de valores atípicos. 

Figura 13. Resultados de observación normal vs supervisada. 

 
La figura 14 de caja revela que el grupo con cepillado supervisado presenta una mayor mediana 

y mayor dispersión en la duración del cepillado en comparación con el grupo normal, lo que indica 

que la supervisión favorece tiempos más prolongados y consistentes. Además, se observan más 

valores atípicos en el grupo normal, lo que sugiere comportamientos más variables y menos 

controlados. En conjunto, estos resultados respaldan la efectividad de la supervisión como 

estrategia para mejorar la calidad del cepillado dental. 
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Figura 14. Histograma de frecuencia 

 
Discusión 

Los resultados obtenidos ponen de manifiesto que la utilización de sensores inerciales junto a 

modelos de Deep Learning logra altos niveles de accuracy, recall, F1-score y precision en la 

detección de técnicas de cepillado. En la validación de los modelos, se observaron métricas 

sobresalientes en modelo CNN con las dos señales combinadas accelerometer + gyroscope 

utilizando ventana de 2 segundo (100 muestra), la métrica accurary y F1-score se obtuvo un valor 

de 0.9912, otro de los modelos que se tiene excelentes resultados fue CNN + LSTM (accurary y 

F1-score = 0.9935). Además, al analizar los modelos con las señales por separados, se identificó 

que los mejore resultados se obtuvieron utilizando exclusivamente la combinación CNN + LSTM.   

Para tener referencia de los modelos se realizó pruebas de las señales del sensor accelerometer + 

gyroscope utilizando ventanas de 3 segundos (150 muestras), el modelo híbrido CNN + LSTM 

llegaron a tener valores más alto en el entrenamiento, (accurary y F1-score = 0.9965).  

Estas observaciones están en línea con estudios previos. Chen et al. (2021) desarrollaron un 

modelo RPNN para evaluar la técnica de cepillado mediante sensores inerciales, alcanzando una 

precisión del 99.08%, superando en un 16.2% a los modelos basados en CNN y en un 21.21% a 

los LSTM. Sin embargo, su investigación se centró exclusivamente en la detección de una postura 

específica (técnica de Bass) bajo condiciones estrictamente controladas. En contraste, el presente 

estudio se orienta hacia la evaluación de patrones de cepillado en condiciones de uso cotidiano, 

lo que le confiere una aplicabilidad más cercana al entorno real y a la intervención educativa. 

Por otro lado, en el estudio mTeeth de Shetty et al. (2021), donde se utilizaron sensores en la 

muñeca para identificar superficies dentales, se empleó un modelo bayesiano en ensamblaje, 

alcanzando una clasificación fiable en entornos no controlados. El enfoque con redes profundas 

integradas brinda ventajas en precisión, mejorando la aplicabilidad. En términos de herramientas 

y plataformas, Palanisamy (2024) revisó tecnologías inteligentes de higiene bucal y resaltó la 

eficacia clínica y la importancia de la adopción, destacando que estas innovaciones mejoran la 

adherencia y reducen la gingivitis. Este resultado valida la relevancia social de sistemas como el 

de este estudio, que, además, ofrecen retroalimentación inmediata al usuario y al profesional. En 

línea con esto, Mattila et al. (2023) estudiaron dispositivos IoT inteligentes en salud oral, 

enfatizando los desafíos en precisión de medición y aceptación del usuario. El análisis cualitativo, 

con observación clínica, confirma un margen de mejora en movimientos complejos, 

especialmente en la zona posterior (6 errores observados), lo cual coincide con las brechas 

señaladas. 

Estudios como ROBAS, de Timmers et al. (2020), mostraron alta validez en laboratorio y en 

condiciones reales al usar sensores integrados en cepillos convencionales para grabar episodios y 

retroalimentación mediante aplicaciones móviles. El uso de MetaBase va en la misma dirección, 

contribuyendo a una herramienta práctica para Clínica y educación. Además, Nanni et al. (2021) 

subrayan que los sensores 'multiaxiales' de 9 ejes permiten realizar reconocimientos en tiempo 

real con alta eficiencia computacional, lo que coincide con nuestra elección del sensor 

MetaMotionR, así como arquitecturas CNN/LSTM. Dando un paso más, Yuan et al. (2024) 

utilizaron señales acústicas para diagnosticar caries y cálculos con AUC cercanos a 0.90. Aunque 
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la fuente de datos difiere (acústica vs. inercial), ambos métodos evidencian que tecnologías no 

invasivas pueden detectar condiciones dentales con gran precisión. 

En el terreno de la interacción humano-máquina, Sun et al. (2021) desarrollaron TeethTap, un 

modelo de detección de gestos dentales con soporte SVM y DTW, alcanzando una exactitud del 

90.9%. Aunque se orienta a interfaces computacionales, destaca la capacidad de los sensores 

inerciales para detectar micro-movimientos, algo que el modelo también captura en hábitos de 

cepillado. Por último, García-de-Villa et al. (2024) realizaron una revisión sobre sensores 

inerciales en análisis de movimiento y concluyeron que el Deep Learning mejora notablemente la 

calidad de la clasificación frente a métodos tradicionales. El presente estudio lo confirma al lograr 

valores en rango de 0.89–0.955, compatibles con estudios modernos en este campo. 

En comparación con los estudios mencionados, los resultados de precisión y sensibilidad 

obtenidos aquí están entre los valores reportados para aplicaciones biomédicas similares, 

reafirmando la eficacia del enfoque. La incorporación del componente cualitativo y la validación 

clínica confieren mayor solidez que muchos estudios que solo miden desempeño computacional 

en condiciones ideales. Sin embargo, persisten desafíos. Por ejemplo, los errores en zonas 

posteriores coinciden con las dificultades identificadas en Palanisamy (2024) y mTeeth (Shetty et 

al., 2021), lo que sugiere que se requiere recopilar más datos variados y tal vez mejorar la 

segmentación de señales. 

En fases futuras, se pretende entrenar los modelos para que no solo clasifique patrones de 

cepillado, sino que pueda integrarse con módulos de retroalimentación educativa personalizados. 

Aunque el presente modelo no configura recomendaciones automáticas, su arquitectura y 

precisión permiten proyectar su evolución hacia aplicaciones que orienten al usuario sobre 

mejoras técnicas en tiempo real. Además, se podrían aplicar otros algoritmos de clasificaciones 

como RESNET y INCEPTION para comparar resultados, para saber si los resultados es factible 

realizar el análisis de ANOVA. 
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